Copied to
clipboard

G = C22×C19⋊C6order 456 = 23·3·19

Direct product of C22 and C19⋊C6

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C22×C19⋊C6, D383C6, C38⋊(C2×C6), C19⋊C3⋊C23, D19⋊(C2×C6), C19⋊(C22×C6), (C2×C38)⋊4C6, (C22×D19)⋊3C3, (C2×C19⋊C3)⋊C22, (C22×C19⋊C3)⋊2C2, SmallGroup(456,44)

Series: Derived Chief Lower central Upper central

C1C19 — C22×C19⋊C6
C1C19C19⋊C3C19⋊C6C2×C19⋊C6 — C22×C19⋊C6
C19 — C22×C19⋊C6
C1C22

Generators and relations for C22×C19⋊C6
 G = < a,b,c,d | a2=b2=c19=d6=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c12 >

Subgroups: 550 in 64 conjugacy classes, 37 normal (8 characteristic)
C1, C2, C2, C3, C22, C22, C6, C23, C2×C6, C19, C22×C6, D19, C38, C19⋊C3, D38, C2×C38, C19⋊C6, C2×C19⋊C3, C22×D19, C2×C19⋊C6, C22×C19⋊C3, C22×C19⋊C6
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, C22×C6, C19⋊C6, C2×C19⋊C6, C22×C19⋊C6

Smallest permutation representation of C22×C19⋊C6
On 76 points
Generators in S76
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 65)(28 66)(29 67)(30 68)(31 69)(32 70)(33 71)(34 72)(35 73)(36 74)(37 75)(38 76)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(39 58)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 65)(47 66)(48 67)(49 68)(50 69)(51 70)(52 71)(53 72)(54 73)(55 74)(56 75)(57 76)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)
(1 58)(2 66 8 76 12 70)(3 74 15 75 4 63)(5 71 10 73 7 68)(6 60 17 72 18 61)(9 65 19 69 13 59)(11 62 14 67 16 64)(20 39)(21 47 27 57 31 51)(22 55 34 56 23 44)(24 52 29 54 26 49)(25 41 36 53 37 42)(28 46 38 50 32 40)(30 43 33 48 35 45)

G:=sub<Sym(76)| (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,58)(2,66,8,76,12,70)(3,74,15,75,4,63)(5,71,10,73,7,68)(6,60,17,72,18,61)(9,65,19,69,13,59)(11,62,14,67,16,64)(20,39)(21,47,27,57,31,51)(22,55,34,56,23,44)(24,52,29,54,26,49)(25,41,36,53,37,42)(28,46,38,50,32,40)(30,43,33,48,35,45)>;

G:=Group( (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,58)(2,66,8,76,12,70)(3,74,15,75,4,63)(5,71,10,73,7,68)(6,60,17,72,18,61)(9,65,19,69,13,59)(11,62,14,67,16,64)(20,39)(21,47,27,57,31,51)(22,55,34,56,23,44)(24,52,29,54,26,49)(25,41,36,53,37,42)(28,46,38,50,32,40)(30,43,33,48,35,45) );

G=PermutationGroup([[(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,65),(28,66),(29,67),(30,68),(31,69),(32,70),(33,71),(34,72),(35,73),(36,74),(37,75),(38,76)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(39,58),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,65),(47,66),(48,67),(49,68),(50,69),(51,70),(52,71),(53,72),(54,73),(55,74),(56,75),(57,76)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)], [(1,58),(2,66,8,76,12,70),(3,74,15,75,4,63),(5,71,10,73,7,68),(6,60,17,72,18,61),(9,65,19,69,13,59),(11,62,14,67,16,64),(20,39),(21,47,27,57,31,51),(22,55,34,56,23,44),(24,52,29,54,26,49),(25,41,36,53,37,42),(28,46,38,50,32,40),(30,43,33,48,35,45)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B6A···6N19A19B19C38A···38I
order12222222336···619191938···38
size111119191919191919···196666···6

36 irreducible representations

dim11111166
type+++++
imageC1C2C2C3C6C6C19⋊C6C2×C19⋊C6
kernelC22×C19⋊C6C2×C19⋊C6C22×C19⋊C3C22×D19D38C2×C38C22C2
# reps161212239

Matrix representation of C22×C19⋊C6 in GL7(𝔽229)

1000000
022800000
002280000
000228000
000022800
000002280
000000228
,
228000000
0100000
0010000
0001000
0000100
0000010
0000001
,
1000000
0919220138109228
0929220138109228
09110220138109228
0919221138109228
0919220139109228
0919220138110228
,
134000000
09102167818109
000002280
081567337201120
02001481022890228
000228000
09028102148200119

G:=sub<GL(7,GF(229))| [1,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,228,0,0,0,0,0,0,0,228],[228,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,91,92,91,91,91,91,0,9,9,10,9,9,9,0,220,220,220,221,220,220,0,138,138,138,138,139,138,0,109,109,109,109,109,110,0,228,228,228,228,228,228],[134,0,0,0,0,0,0,0,9,0,81,200,0,90,0,102,0,56,148,0,28,0,167,0,73,102,228,102,0,81,0,37,28,0,148,0,8,228,201,90,0,200,0,109,0,120,228,0,119] >;

C22×C19⋊C6 in GAP, Magma, Sage, TeX

C_2^2\times C_{19}\rtimes C_6
% in TeX

G:=Group("C2^2xC19:C6");
// GroupNames label

G:=SmallGroup(456,44);
// by ID

G=gap.SmallGroup(456,44);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-19,10804,544]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^19=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^12>;
// generators/relations

׿
×
𝔽